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ABSTRACT
Social learning is an extension to evolutionary algorithms
that enables agents to learn from observations of others in
the population. Historically, social learning algorithms have
employed a student-teacher model where the behavior of one
or more high-fitness agents is used to train a subset of the
remaining agents in the population. This paper presents
ESL, an egalitarian model of social learning in which agents
are not labeled as teachers or students, instead allowing any
individual receiving a sufficiently high reward to teach other
agents to mimic its recent behavior. We validate our ap-
proach through a series of experiments in a robot foraging
domain, including comparisons of egalitarian social learn-
ing with baseline neuroevolution and a variant of student-
teacher social learning. In a complex foraging task, ESL con-
verges to near-optimal strategies faster than either bench-
mark approach, outperforming both by more than an order
of magnitude. The results indicate that egalitarian social
learning is a promising new paradigm for social learning in
intelligent agents.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning, Problem Solving, Control Methods, and Search

Keywords
Social Learning, Evolutionary Algorithms, Artificial Life,
Cultural Algorithms, On-line Evolution

1. INTRODUCTION
Evolutionary algorithms (EAs) [11] evaluate agents ei-

ther in isolation or in direct competition with a subset of
the other members of the population. Social and cultural
learning algorithms [21] extend EAs by enabling agents to
leverage observations of other members of the population
to improve their own performance during their lifetime. By
learning from others without having to directly experience

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12, July 7-11, 2012, Philadelphia, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1177-9/12/07 ...$10.00.

or acquire knowledge, social learning algorithms have been
able to improve the learning rate of EAs in many challenging
domains [9, 21, 12, 19, 17, 26, 2, 8].

Traditionally in social learning algorithms, each agent is
either a student or a teacher [20, 3]. All actions of the teacher
agents are considered to be good examples from which to
learn, as they are derived from a high-fitness strategy (i.e.,
the teacher’s policy). However, an agent with high overall
fitness may not always choose good actions and agents with
low overall fitness may actually perform well in some limited
scenarios. Filtering potential observations based on their
own merit may therefore be more appropriate and lead to
both improved learning rate and stronger final strategies.

This paper presents Egalitarian Social Learning (ESL) as
an alternative to the student-teacher paradigm. Agents in
ESL are divided into subcultures at the start of each genera-
tion and can learn from any other agent in their subcultural
group. Learning examples are determined by a user-defined
acceptability function that filters out examples leading to
low rewards. When an action is accepted, agents mimic it
in order to learn a policy similar to that of the observed
agent. ESL differs from other social learning algorithms in
that the quality of a training example is measured by the re-
ward received rather than the fitness of the agent generating
the example.

We validate our algorithm in a well-known foraging do-
main [9, 12, 26, 2, 8] in which agents must learn to navigate
the world efficiently, gathering nutritious food while avoiding
poisonous food. The empirical results indicate that egal-
itarian social learning is able to quickly find near-optimal
strategies more than an order of magnitude faster than ei-
ther a student-teacher variant or baseline neuroevolution in
a complex domain. Additionally, the use of subcultures in
ESL is shown to promote behavioral diversity and prevent
premature convergence to sub-optimal strategies that would
otherwise emerge if agents observed all individuals in the
population.

This paper makes the following novel contributions:

• An egalitarian social learning algorithm, in which all
individuals in a subculture observe, learn from, and
teach each other;

• A behavioral diversity analysis of two egalitarian social
learning variants;

• A performance comparison between ESL and tradi-
tional student-teacher social learning.

The remainder of the paper is structured as follows. Back-
ground information and prior work is discussed in Section



2. Section 3 details the how the Egalitarian Social Learning
algorithm works. Section 4 describes both the experimental
setup and the foraging domain in detail. Section 5 presents
experimental results. A discussion of the results and planned
future work are described in Section 6. Section 7 presents
conclusions.

2. BACKGROUND
In this section, background information and motivation

for social learning is provided, as well as an introduction to
the evolutionary framework underlying ESL.

2.1 Social Learning
One explanation for the evolution of large brains in pri-

mates is the social intelligence hypothesis [6, 15], which
states that the need to handle complex social behaviors
was the primary selection pressure driving the increase in
brain size. The cultural intelligence hypothesis extends this
concept solely to humans, stating that our brains evolved
to handle the specific challenge of culture creation and so-
cial learning [25]. These hypotheses are currently the most
widely accepted explanations for the evolution of the human
brain among evolutionary biologists and cognitive scientists
[14], and have been supported by strong empirical evidence
in recent years [13].

Cultural and social learning algorithms [21] model this
biological mechanism in multi-agent systems by designating
teacher agents that propagate knowledge and train other
agents in the population. These techniques effectively en-
hance EAs with a hierarchical structure (i.e., students and
teachers) that makes it possible to discover suitable actions
to use as training examples and target individuals to train.
Typical cultural algorithms therefore capture the ability of
humans to learn from formal instruction by an expert, but
they do not fully model all forms of learning from observa-
tion in primates. For instance, human brains contain mirror
neurons [1] that activate when other humans are observed
interacting with the world, in effect mirroring the observed
human’s action internally. Such processes enable humans to
learn socially without concern for the status or expertise of
the observed individual.

2.2 Egalitarianism
Egalitarianism refers to any philosophy that advocates

treating all individuals in a population as equals, regard-
less of such factors as background and status [4]. In hunter-
gatherer societies, egalitarianism is a common paradigm for
managing daily activities and organizing social structures
[5]. It is likely that this lack of hierarchy and strict mainte-
nance of equality has been pivotal in the development of hu-
man society and in separating humans from other primates
[10].

2.3 Related Work
Enhancing EAs with social learning is a flourishing area

of research with a long and successful track record. This
section highlights relevant prior work and explains how ESL
differs from previous efforts.

Cultural algorithms [21] have been used frequently in Par-
ticle Swarm Optimization (PSO) [16]. These algorithms
maintain a “belief space” representing different categories
of knowledge that the population has learned. New individ-
uals are trained using this belief space in a student-teacher

paradigm. In contrast, ESL agents maintain no separate
repository of formal knowledge, instead learning from ob-
servations of others during their lifetime.

Interestingly, ESL could be seen as a memetic algorithm
(MA) [18]. As originally defined by Dawkins [7], a meme is a
“unit of imitation in cultural transmission” including “tunes,
ideas, catch-phrases, clothes fashions, ways of making pots
or of building arches”. Knowledge propagation in ESL par-
ticularly relates to the latter— ways of making pots or build-
ing arches are similar to strategies for gathering food in that
they all are instances of transmitting specific strategies for
performing skilled tasks. Thus, each acceptable learning ex-
ample could be considered a meme being shared within the
agent’s subculture. Nevertheless, traditional MAs [19], in-
cluding similar Lamarckian evolution methods for evolving
recurrent neural networks [17], focus on using local improve-
ment heuristics and typically rely on off-line transmission
of memes via mating and genetic recombination. However,
agents in ESL transmit memes on-line as they are generated
and observed during the evaluation process. Thus, while we
could classify ESL as an MA, we believe the distinct trans-
mission and learning techniques employed by the algorithm
better characterize it as a social learning method.

The ability of social learning to improve agents in a for-
aging domain has been explored by several researchers in
recent years. Denaro et. al. [9] used a student-teacher
model of cultural evolution without genetic inheritance and
demonstrated that the population will continue to improve if
Gaussian noise is added to the training examples. The NEW
TIES system [12, 26] simulates a steady-state evolution of
decision tree agents where at each step the teacher agents
probabilistically transmit their decisions and students prob-
abilistically incorporate this knowledge. Acerbi et. al. [2]
use social learning to train embodied agents to mimic the be-
haviors of more experienced agents. Finally, de Oca et. al.
[8] propose a methodology for incremental social learning in
PSO to update Q-learning [27] value functions by randomly
selecting two individuals from the population and combining
their values for a given update. While all of these studies
are closely related and motivated by similar biological pro-
cesses as ESL, they fundamentally all rely on the concept of
students and teachers, and perform either no filtering or a
reward-agnostic filtering of state-action pairs to be used in
updating the population.

2.4 Evolutionary Framework
NeuroEvolution of Augmenting Topologies (NEAT)[24] is

an evolutionary algorithm that generates recurrent neural
networks. Through a process of adding and removing nodes
and changing weights, NEAT evolves genomes that decode
into networks. In every generation, those networks with the
highest fitness reproduce, while those with the lowest fitness
are unlikely to do so. NEAT maintains genetic diversity
through speciation and encourages innovation through ex-
plicit fitness sharing.

In the foraging domain, NEAT is used to generate a pop-
ulation of individual neural networks that control agents in
the world. The input to each network is the agent’s sensors,
and the outputs control the agent’s velocity and orientation.
The fitness of each network is determined by the success of
the agent it controls— over the course of a generation, net-
works that control agents who eat a good deal of rewarding
food and very little poison will have high fitness and those
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Figure 1: The foraging domain. This domain is a
foraging world in which agents gain fitness by con-
suming plants that they approach. A) A piece of
nutritious food which increases fitness. B) A piece
of poisonous food which decreases fitness. C) An
agent, the architecture of which is described in Fig-
ure 2.

that control agents with less wise dietary habits will have
low fitness.

In standard NEAT, the networks that are created do not
change within one generation. To facilitate social learning,
we must perform backpropagation [22] on the networks that
NEAT creates in order to train agents on accepted examples.
Since NEAT networks are recurrent, ESL enhances NEAT
with backpropagation capabilities using the backpropaga-
tion through time algorithm [28].

The final fitness of each phenome, then, reflects the perfor-
mance of the individual that used that phenome and elabo-
rated on it over the course of a generation. This elaboration
drives evolution in two alternate ways. In Darwinian evolu-
tion, the changes that were made to the phenome only affect
selection and are not saved; in Lamarckian, the genome itself
is modified.

3. EGALITARIAN SOCIAL LEARNING
Algorithm 1 presents the on-line, generational learning al-

gorithm for Egalitarian Social Learning. ESL is designed for
domains where an agent receives multiple rewards through-
out its lifetime. Agents maintain a sliding window of their
most recent states, actions, and rewards that serve as train-
ing examples for observing agents. When an agent receives
a reward, other agents observe the event and determine if it
qualifies as an acceptable training example. The key insight
in ESL is that the agents should focus on the event itself to
determine if the observed actions should be emulated. The
overall fitness of the acting agent is not considered, as it is
possible that a low-fitness strategy may perform high-quality
actions in certain circumstances.

To promote diversity and prevent the population from
prematurely converging to local optima, all agents are di-
vided into observational groups called subcultures. At each
timestep, each agent observes its state, responds with a de-
sired action, and receives a resulting reward. The memory of
an individual agent is thus a tuple containing its most recent
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Figure 2: The architecture of our foraging agents.
A) Each agent has a 180◦ field of vision, represented
as eight sensors for each plant type. B) Each agent
is controlled by a neural network taking the agent’s
current velocity and sensor activations as inputs and
outputting the desired change in orientation and ve-
locity.

state, action, and reward. Each agent’s memory is evaluated
by all other members of its subculture using a user-defined
acceptability function. The role of this function is to filter
out low-quality examples and focus the agents on learning
only from actions that will lead to strong strategies. When
an agent’s recent memory is judged as acceptable, it is then
used as a teaching example for all other agents in its sub-
culture.

The next section presents the experimental domain used
to evaluate the efficacy of Egalitarian Social Learning.

4. EXPERIMENTAL SETUP
This section describes the evaluation domain, including

the inputs and outputs that agents receive, and the common
parameters across all experiments.1

4.1 The Foraging Domain
The domain used to evaluate ESL is a foraging world in

which agents move freely on a continuous toroidal surface.
The world is populated with various plants, some of which
are nutritious and bear positive reward, while others are poi-
sonous and bear negative reward. These plants are randomly
distributed over the surface of the world. The foraging do-
main is non-competitive and non-cooperative; each agent
acts independently of all other agents, with the exception of
the teaching signals that pass between them. At the start
of each generation, all individuals begin at the center of the
world, oriented in the same direction, and confronted with
the same plant layout and configuration. Every agent then
has a fixed number of time steps to move about the surface
of the world eating plants— which happens automatically
when an agent draws sufficiently close to one— before the
evaluation is over. Figure 1 shows an example of a foraging
world with two types of plants and eight agents.

1All code for these experiments is available online at
http://github.com/tansey/social-learning.



Algorithm 1 Egalitarian Social Learning

Input: generations, maxT imesteps
population←InitializePopulation()
g ← 0
t← 0
loop

while g < generations do
subcultures← FormSubcultures(population)
while t < maxTimesteps do

for each subculture in subcultures do
for each agent in subculture do

s←ReceiveAgentInputs()
a←GetResponse(agent, s)
r ←TakeAction(a)
agent.memory ←UpdateMemory({s, a, r})

end for
for each agent in subculture do

if Acceptable(agent.memory) then
for all observer in subculture do

Train(observer, agent.memory)
end for

end if
end for

end for
t← t + 1

end while
population←SelectAndReproduce(population)
g ← g + 1

end while
end loop

4.2 Sensors and Outputs
Agents “see” plants within a 180◦ field of vision with a

100-unit horizon via a collection of sensors. Each agent has
eight sensors for each type of plant, with each sensor cover-
ing a different 22.5◦ sector of the 180◦ ahead of the agent.
Agents cannot see other individuals or plants they have al-
ready eaten— all they can see is edible food. The strength
of the signal generated by each plant is proportional to its
proximity to the agent. Agents also have a sensor by which
they can detect their current velocity. As agents can only
turn up to 30◦ in a given timestep, knowledge of velocity is
necessary for agents to accurately plan optimal trajectories
(e.g., agents may need to slow down in order to avoid over-
shooting a plant). Each agent is controlled by an artificial
neural network that maps from the agent’s sensor readings
to the desired change in orientation and velocity. Figure 2
shows the architecture of a foraging agent.

4.3 Common Parameters
Two separate configurations of the robot foraging world

are used in the experiments. The experiments presented
in Figures 3, 4, 5, and 8 use a “simple” world where the
toroidal surface is 2000 by 2000 units, with a single plant
type of value 100 and 100 randomly distributed instances of
the plant. In this world, the agents have a straightforward
task of learning to navigate efficiently and gather as many
plants as possible.

The remaining set of experiments uses a second, more
complex world to evaluate performance. The “complex”
world has a surface of 500 by 500 units, with five differ-
ent plant types of value -100, -50, 0, 50, and 100. For
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Figure 3: A comparison of the two learning com-
ponents of ESL in isolation. The evolution-free so-
cial learning algorithm collapses after several gener-
ations, while neuroevolution alone slowly converges
to a stable strategy. Egalitarian social learning com-
bines both methods.

each plant type, 20 instances are created and randomly dis-
tributed across the surface. This world presents the agents
with a more difficult task as they must efficiently gather
nutritious food while simultaneously avoiding the poisonous
food.

In all four experiments, 100 different agents are created
in each generation. All networks are initialized with fully-
connected weights with no hidden neurons and a learning
rate of 0.1 is used when performing backpropagation. Agents
automatically eat any plant within five units. Each evalua-
tion lasts 1000 timesteps and the results for each experiment
are the average of 30 independent runs. In all plots, error
bands denote standard error. The acceptability function for
all experiments is to learn from any action yielding a positive
reward.

The next section describes each experiment and its out-
come in detail.

5. RESULTS
Four main experiments were conducted: 1) determining

the baseline performance of egalitarian social learning and
simple neuroevolution, each in isolation, 2) measuring the
performance of a monocultural ESL in Darwinian and Lamar-
ckian evolutionary paradigms, 3) evaluating whether sub-
cultural learning improves performance compared to hav-
ing a monoculture population, and 4) comparing ESL to a
student-teacher learning algorithm in both simple and com-
plex foraging tasks. The first three experiments examine
the efficacy of the various components of the ESL algorithm
while the fourth experiment serves to validate the final al-
gorithm against a variant of a related approach in the lit-
erature. The experimental results show that ESL is able to
evolve high-quality strategies with substantially fewer agent
evaluations in the complex task than previous algorithms.

5.1 Egalitarian Learning vs. Neuroevolution
The first experiment establishes a baseline for understand-

ing the ability of our two component methods, social learn-
ing and neuroevolution, to evolve high-quality strategies in
isolation. To evaluate social learning in isolation, a monocul-
tural population of 100 randomly initialized neural networks
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Figure 4: The effects of Darwinian and Lamarck-
ian evolution when using a monocultural variant of
ESL. While both evolutionary paradigms converge
rapidly Lamarckian evolution is more effective than
Darwinian in the foraging domain. Consequently,
Lamarckian evolution is the paradigm used in all re-
maining experiments.

is created and evaluated without selection or reproduction
for 200K time steps. After every 1000 time steps, the popu-
lation champion is recorded and the population fitness and
world are reset. This is treated as a “generation” in order to
compare it to baseline neuroevolution.

Figure 3 shows the results of the experiment. While evolution-
free social learning alone is able to improve initially, after
several epochs a regression-to-the-mean effect is observed in
which the entire population converges to a mediocre average
score. A similar effect has been observed in previous social
learning experiments [9], suggesting that some form of mu-
tation is needed to prevent population collapse. In contrast,
neuroevolution evolves solutions with fitnesses two to three
times higher than that of egalitarian social learning alone
after approximately 50 generations.

Having validated that social learning alone is not suffi-
cient, the next experiment compares the performance of so-
cial learning when used as an enhancement to two different
forms of simulated evolution.

5.2 Darwinian vs. Lamarckian Evolution
Genetic inheritance paradigms in evolution fall into one

of two main categories: Darwinian and Lamarckian. In
Darwinian evolution, individual genomes are fixed and any
knowledge or abilities gained during their lifetimes are not
passed on to their offspring at birth. By contrast, in Lamar-
ckian evolution an individual’s genome changes as it learns
throughout its life, and these changes are passed on to each
of its offspring. In the context of neuroevolution, this cor-
responds to whether the changes in each individual’s neural
network weights, as a result of social learning, are propa-
gated to their genome at the end of the generation.

Figure 4 shows the results of applying a monocultural
egalitarian social learning algorithm to the foraging domain
in both the Lamarckian and Darwinian paradigms. The per-
formance of both algorithms quickly converges, with Lamar-
ckian reaching a higher-fitness solution than Darwinian evo-
lution. In the context of on-line evolutionary learning algo-
rithms, previous work [29] showed that Darwinian evolution
is likely to be preferable to Lamarckian evolution in dynamic
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Figure 5: Monocultural agents learning from the
entire population and subcultural agents learning
only from their subcultures. Subcultural agents out-
perform monocultural agents, converging to a much
higher ultimate fitness.

environments where adaptation is essential and the Baldwin
effect [23] may be advantageous. However, as adaptation is
not necessary for foraging agents (i.e., the rewards of each
plant type are the same in every generation), in this exper-
iment Lamarckian evolution outperforms Darwinian evolu-
tion.

Nevertheless, in both cases performance converges to a
lower score than that of simple neuroevolution (Figure 3).
The next experiment presents the results of introducing sub-
cultures into the egalitarian model to overcome the tendency
to converge.

5.3 Monocultural vs. Subcultural Learning
On one hand, monocultural Lamarckian social learning is

able to find good results quickly, while on the other hand, it
is likely to provide redundant information that may result
in getting stuck in local optima.

In order to address this problem, we introduce a subcul-
tural version of egalitarian social learning designed to pro-
mote and protect diversity. At the start of each generation,
the population is divided into 10 subcultures of 10 agents
each, with each agent’s subculture decided at random. Dur-
ing the evaluation, agents only teach and learn from other
agents in their own subculture. In addition to increasing
behavioral diversity relative to learning from the entire pop-
ulation, this variant also has the appealing practical advan-
tage that it decreases the worst-case number of iterations of
backprop. For instance, in a population of 100 individuals
with ten subcultures, an accepted training example is prop-
agated to only 9 other agents, compared to 99 agents for the
same example in a monocultural algorithm.

Figure 5 shows results comparing monocultural and sub-
cultural learning. Subcultural learning has a steeper learn-
ing curve than the monocultural method. When every mu-
tated organism has the opportunity to train every other,
as is the case in monocultural learning, the entire popu-
lation may be negatively impacted by any one individual.
By preventing agents that lead the population towards lo-
cal optima from impacting the remainder of the population,
subcultural learning provides safety and protection from pre-
mature convergence. Because subcultural evolution is more
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Figure 6: Behavioral diversity of the population’s
velocity actions for both monocultural and subcul-
tural egalitarian social learning. Velocity converges
quickly in both models, as there is rarely cause to
move at any velocity below the maximum. This
shows that subcultural ESL does not inhibit con-
vergence when it is useful.

efficient and provides better results we incorporate it in our
final algorithm.

To better understand why subcultural ESL is able to pre-
vent premature convergence, the behavioral diversity of the
population was analyzed after every generation. After each
evaluation, a new instance of the simple world was gener-
ated and a set of input states was created corresponding
to random locations, orientations, and velocities. For every
agent, its output response (i.e., the desired change in ve-
locity and orientation) was observed for each of the input
states. Figures 6 and 7 show the average variance of the
population response to each of the 100 input states after ev-
ery generation in the complex domain, effectively measuring
the behavioral diversity of the population. Velocity response
converges for both models almost immediately, while orien-
tation response remains more diverse in subcultural than in
monocultural learning.

Although the orientation and velocity results may seem
contradictory, they actually reflect a desirable property of
subcultural learning. In the case of velocity, both the pop-
ulation and cultural algorithms quickly converge to low di-
versity. Since even at full speed the agents can sense plants
up to ten timesteps away, there is no clear benefit to slowing
down in the current domain and one would expect a strong
strategy to always output the maximum value for velocity.
Thus, preserving diversity in this area would be detrimental
to the performance of the population. Conversely, the diver-
sity of orientation should be preserved, as there is a trade-
off between turning toward an immediate but small reward,
such as a single plant within one step, and turning toward
a delayed reward, such as a cluster of plants a few steps
away. This complexity suggests that the fitness landscape
for orientation is likely filled with numerous local optima
and diversity preservation should be beneficial to evolution.

The results of the diversity analysis suggest that the sub-
cultural algorithm preserves diversity only when it is use-
ful (e.g., orientation response), while not preventing conver-
gence when diversity is unnecessary (e.g., velocity response).

The next experiment compares the ESL algorithm to a
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Figure 7: Behavioral diversity of the population’s
orientation actions for both monocultural and sub-
cultural egalitarian social learning. There are many
possible good responses for change in orientation—
tradeoffs between small, close rewards and large,
distant rewards mean that exploring large portions
of the search space can be fruitful. Subcultural ESL
maintains a higher level of diversity and avoids con-
verging to local optima.

benchmark student-teacher model and baseline neuroevolu-
tion in NEAT.

5.4 ESL vs. Student-Teacher
In the final set of experiments, subcultural ESL is com-

pared to an on-line student-teacher learning algorithm in-
spired by the NEW TIES system [12]. The system utilizes a
steady-state evolution in which at every timestep each agent
probabilistically teaches the lowest-fitness member of the
population within some radius, effectively forming geograph-
ical subcultures. The original system relies on a steady-state
evolution where weaker agents eventually die out and do not
have as much of a chance to propagate poor training exam-
ples as long-lasting agents. To adapt this approach to a
generational EA, and to maximize the fairness of the com-
parison, a population of 10 subcultures is created with 10
agents each. At each time step, the current champion from
each subculture teaches its group’s lowest-fitness member
on its most recent action regardless of whether the teaching
agent received any reward.

It is worth noting that many social learning algorithms fo-
cus on off-line training, where teachers are the previous gen-
eration’s champion(s). In these models, students are trained
before the actual evaluation to mimic the champion(s), often
with Gaussian noise added to the teacher’s outputs to pro-
mote diversity in the population [9]. While such approaches
may have also performed well in the foraging domain, they
are not on-line learning algorithms. Rather, agents in these
algorithms are static at evaluation time and do not learn
from their own experiences or those of others. Thus, we
chose to adapt the NEW TIES model to a generational EA
as it is the most closely related approach in the literature.

Figures 8 and 9 show the results of the subcultural ESL
algorithm compared to the student-teacher variant of NEW
TIES and baseline neuroevolution. In the simple domain,
all three approaches converge to solutions of approximately
equivalent fitness after 200 generations. The student-teacher
method converges to a near-optimal strategy slightly faster
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Figure 8: ESL compared to baseline neuroevolution,
and student-teacher learning in the simple world.
All strategies converge to solutions of similar qual-
ity, with the student-teacher approach converging
slightly faster than ESL.

than ESL, though both are improvements over baseline neu-
roevolution. However, subcultural ESL converges to a near-
optimal solution much faster than the student-teacher vari-
ant in the complex world.2 The egalitarian approach is more
than an order of magnitude faster in this domain, reaching
a higher fitness by generation 50 than either the student-
teacher or baseline neuroevolution methods achieve by gen-
eration 500.

The contrasting performance in the two foraging domains
highlights a key property of ESL— namely, its ability to
combine a variety of sub-strategies into a single composite
strategy. In the simple domain, with only a single plant type
and relatively low dimensionality, such composite strategies
are unnecessary as agents need only learn to navigate the
world efficiently. Student-teacher methods are ideally suited
for this class of tasks as they teach only a single strategy. In
the complex world, ESL excels as it enables agents to com-
bine effective sub-strategies for gathering or avoiding each
plant type. Thus, ESL is likely best suited for domains
where sophisticated agent behaviors are required.

The next section presents a discussion of the experimental
results and indicates possible future directions for ESL.

6. DISCUSSION AND FUTURE WORK
The results of the above experiments in egalitarian social

learning suggest that learning from strong actions, rather
than high-fitness agents, is a powerful approach to social
learning. The success of our algorithm in a given domain is
predicated on two main user-defined parameters: the group-
ing of agents into subcultures and the criteria of the accept-
ability function.

For the experiments where subcultures were used, a simple
division of 10 groups of equal size was chosen for the subcul-
ture creation strategy. Preliminary experiments showed that
ESL results in the foraging domain were robust to moderate
variations in the number of equal-sized subcultures, with 5
groups and 20 groups both demonstrating strong speedup
compared to our benchmarks. However, it is possible that

2Note that in the foraging domain, near-optimal is often the
best that can be accomplished as poisonous plants may be
randomly laid out too close to nutritious ones, requiring an
agent to eat either both or none.
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Figure 9: ESL compared to simple neuroevolution,
and student-teacher learning in the complex world.
ESL is more than an order of magnitude faster,
reaching a higher fitness by generation 50 than ei-
ther comparison method achieves by generation 500.

equal-sized groups are not optimal or that a dynamic subcul-
ture creation algorithm that maximizes behavioral diversity
would perform better; such issues will be addressed in future
work.

Creating an acceptability function is a closely related task
to that of creating a fitness function. Consequently, the
performance of ESL depends on the ability of the user to
craft a useful acceptability function. This task may require
paying attention to the subtle details of one’s domain as
the definition of this function may not always be obvious.
The acceptability function was intentionally kept simple in
both foraging domains so as to demonstrate the strength
of the general egalitarian learning approach. However, it is
possible that employing a more sophisticated heuristic could
speed up learning even more.

The robot foraging domain is well-suited for exploring
extensions and improvements to egalitarian social learning.
Whereas the current version only utilizes a single example
at every time step, teaching more complex behaviors using
reward-based approaches may require larger memory sizes.
One potential future work direction is to introduce obstacles
or walls that block the agent from immediately receiving the
reward, necessitating that agents learn compound trajecto-
ries to navigate to the food.

Finally, we plan to expand our benchmark suite to include
more student-teacher variants in the future. Student-teacher
methods can be implemented in many ways, including off-
line learning [2], probabilistic teaching [12], and noisy ex-
amples [9], to name only a few. A more complete set of
benchmarks will help us better understand the relative per-
formance of each approach and how they compare to ESL
both in the foraging domain and on future tasks.

7. CONCLUSIONS
This paper presented an egalitarian approach to social

learning in evolutionary algorithms that enables agents to
learn from high-quality actions. Unlike traditional social
learning algorithms that follow a student-teacher model, ESL
teaches agents based on acceptable actions taken by any
agent in its subculture. By constraining teaching samples
to those from the same subcultural group, ESL promotes
diversity in the overall population and prevents premature



convergence. Experiments in a complex robot foraging do-
main demonstrated that this approach is highly effective at
quickly learning a near-optimal policy with Lamarckian evo-
lution. Our results suggest that Egalitarian Social Learn-
ing is a strong technique and represents a promising new
paradigm for social learning algorithms.
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